skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Noh, Yoo-Jeong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Superresolution is the general task of artificially increasing the spatial resolution of an image. The recent surge in machine learning (ML) research has yielded many promising ML-based approaches for performing single-image superresolution including applications to satellite remote sensing. We develop a convolutional neural network (CNN) to superresolve the 1- and 2-km bands on the GOES-R series Advanced Baseline Imager (ABI) to a common high resolution of 0.5 km. Access to 0.5-km imagery from ABI band 2 enables the CNN to realistically sharpen lower-resolution bands without significant blurring. We first train the CNN on a proxy task, which allows us to only use ABI imagery, namely, degrading the resolution of ABI bands and training the CNN to restore the original imagery. Comparisons at reduced resolution and at full resolution withLandsat-8/Landsat-9observations illustrate that the CNN produces images with realistic high-frequency detail that is not present in a bicubic interpolation baseline. Estimating all ABI bands at 0.5-km resolution allows for more easily combining information across bands without reconciling differences in spatial resolution. However, more analysis is needed to determine impacts on derived products or multispectral imagery that use superresolved bands. This approach is extensible to other remote sensing instruments that have bands with different spatial resolutions and requires only a small amount of data and knowledge of each channel’s modulation transfer function. Significance StatementSatellite remote sensing instruments often have bands with different spatial resolutions. This work shows that we can artificially increase the resolution of some lower-resolution bands by taking advantage of the texture of higher-resolution bands on theGOES-16ABI instrument using a convolutional neural network. This may help reconcile differences in spatial resolution when combining information across bands, but future analysis is needed to precisely determine impacts on derived products that might use superresolved bands. 
    more » « less
  2. Abstract The detection of multilayer clouds in the atmosphere can be particularly challenging from passive visible and infrared imaging radiometers since cloud boundary information is limited primarily to the topmost cloud layer. Yet detection of low clouds in the atmosphere is important for a number of applications, including aviation nowcasting and general weather forecasting. In this work, we develop pixel-based machine learning–based methods of detecting low clouds, with a focus on improving detection in multilayer cloud situations and specific attention given to improving the Cloud Cover Layers (CCL) product, which assigns cloudiness in a scene into vertical bins. The random forest (RF) and neural network (NN) implementations use inputs from a variety of sources, including GOES Advanced Baseline Imager (ABI) visible radiances, infrared brightness temperatures, auxiliary information about the underlying surface, and relative humidity (which holds some utility as a cloud proxy). Training and independent validation enlists near-global, actively sensed cloud boundaries from the radar and lidar systems on board theCloudSatandCALIPSOsatellites. We find that the RF and NN models have similar performances. The probability of detection (PoD) of low cloud increases from 0.685 to 0.815 when using the RF technique instead of the CCL methodology, while the false alarm ratio decreases. The improved PoD of low cloud is particularly notable for scenes that appear to be cirrus from an ABI perspective, increasing from 0.183 to 0.686. Various extensions of the model are discussed, including a nighttime-only algorithm and expansion to other satellite sensors. Significance StatementUsing satellites to detect the heights of clouds in the atmosphere is important for a variety of weather applications, including aviation weather forecasting. However, detecting low clouds can be challenging if there are other clouds above them. To address this, we have developed machine learning–based models that can be used with passive satellite instruments. These models use satellite observations at visible and infrared wavelengths, an estimate of relative humidity in the atmosphere, and geographic and surface-type information to predict whether low clouds are present. Our results show that these models have significant skill at predicting low clouds, even in the presence of higher cloud layers. 
    more » « less